Logparser: Predefined Analyses#

In this section, we showcase various predefined analyses available in the log parser. We utilize project files from the following benchmarks: ogs: Constant viscosity (Hydro-Thermal) and for the staggered scheme we use a prj from ogs tests: HT StaggeredCoupling HeatTransportInStationaryFlow

import pandas as pd

from ogstools.examples import (
    log_const_viscosity_thermal_convection,
    log_staggered,
)
from ogstools.logparser import (
    analysis_convergence_coupling_iteration,
    analysis_convergence_newton_iteration,
    analysis_time_step,
    fill_ogs_context,
    parse_file,
    time_step_vs_iterations,
)

pd.set_option("display.max_rows", 8)  # for visualization only

The preprocessing of logs remains consistent across all examples and thoroughly explained in Logparser: Advanced topics.

log = log_const_viscosity_thermal_convection
records = parse_file(log)
df_records = pd.DataFrame(records)
df_log = fill_ogs_context(df_records)

Analysis of iterations per time step#

For detailed explanation, refer to: Logparser: Introduction. (Section: Use predefined analyses)

ogstools.logparser.analysis_time_step

df_ts_it = time_step_vs_iterations(df_log)
df_ts_it
iteration_number
time_step
0 1
1 2
2 1
3 1
... ...
23 9
24 17
25 23
26 20

27 rows × 1 columns



Analysis of computational efficiency by time step#

The resulting table represents performance metrics for different parts of the simulation, organized by time step. It utilizes ogstools.logparser.analysis_time_step. displaying metrics such as output time [s], step size [s], time step solution time [s], assembly time [s], Dirichlet time [s], and linear solver time [s].

df_ts = analysis_time_step(df_log)
df_ts = df_ts.loc[0]
# Removing MPI_process (index=0) from result (all are 0) for serial log.
df_ts
output_time step_size time_step_solution_time assembly_time dirichlet_time linear_solver_time
time_step
0 0.004476 NaN NaN 0.000000 0.000000 0.000000
1 NaN 1.000000e-07 0.142436 0.048265 0.000944 0.092496
2 NaN 1.000000e-05 0.041676 0.013362 0.000503 0.027244
3 NaN 1.000000e-03 0.033367 0.019580 0.000451 0.012804
... ... ... ... ... ... ...
23 NaN 4.000000e+07 0.531541 0.177440 0.004848 0.343803
24 NaN 2.000000e+08 1.057740 0.272943 0.010794 0.763421
25 NaN 4.000000e+08 3.149970 0.666353 0.014761 2.459589
26 0.006782 3.133499e+08 2.406160 0.550383 0.012222 1.833349

27 rows × 6 columns



Selecting specific metrics (3) and plotting using pandas plot function.

df_ts[["assembly_time", "dirichlet_time", "linear_solver_time"]].plot(
    logy=True, grid=True
)
plot 101 logparser analyses
<Axes: xlabel='time_step'>

Analysis of convergence criteria - Newton iterations#

The ogstools.logparser.analysis_convergence_newton_iteration function allows for the examination of convergence criteria based on Newton iterations. The resulting table provides convergence metrics for monolithic processes. For details, refer to the documentation on <convergence_criterion > defined in in the prj file.

  • |x| is a norm of a vector of the global component (e.g. pressure, temperature, displacement).

  • |dx| is the change of a norm of the global component between 2 iteration of non linear solver.

  • |dx|/|x| is the relative change of a norm of the global component

For this example we had defined in the prj-file:

<convergence_criterion>
  <type>DeltaX</type>
  <norm_type>NORM2</norm_type>
  <abstol>1.e-3</abstol>
</convergence_criterion>

The resulting table contains |x|, |dx| and |dx|/|x| at different time steps, processes and non linear solver iterations.

analysis_convergence_newton_iteration(df_log)
dx dx_x x
time_step process iteration_number
1 0 1 2.559100e+07 2.530300e-02 1.011400e+09
2 0.000000e+00 0.000000e+00 1.011400e+09
2 0 1 0.000000e+00 0.000000e+00 1.011400e+09
3 0 1 0.000000e+00 0.000000e+00 1.011400e+09
... ... ... ... ... ...
26 0 17 9.385500e-03 9.286300e-12 1.010700e+09
18 1.646800e-03 1.629400e-12 1.010700e+09
19 2.994300e-03 2.962700e-12 1.010700e+09
20 5.881000e-04 5.818800e-13 1.010700e+09

136 rows × 3 columns



Staggered#

The resulting table provides convergence criteria for staggered coupled processes, utilizing ogstools.logparser.analysis_convergence_coupling_iteration Logs are generated from running ogs benchmark: HeatTransportInStationaryFlow

log = log_staggered
records = parse_file(log)
df_records = pd.DataFrame(records)
df_log = fill_ogs_context(df_records)

# Only for staggered coupled processes !
analysis_convergence_coupling_iteration(df_log)
dx dx_x x
time_step coupling_iteration coupling_iteration_process
1 1 0 0.35337 0.17246 2.049
1 0.00000 0.00000 1271200.000
2 0 0.00000 0.00000 2.049
1 0.00000 0.00000 1271200.000
... ... ... ... ... ...
49 1 0 0.00000 0.00000 8.293
1 0.00000 0.00000 1271200.000
50 1 0 0.00000 0.00000 8.379
1 0.00000 0.00000 1271200.000

102 rows × 3 columns



Total running time of the script: (0 minutes 0.242 seconds)